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1 Introduction
Analysis of high-dimensional models, models in which the number of parameters to be esti-
mated is large relative to the sample size, is becoming increasingly important. Such models
arise naturally in modern data sets which have many measured characteristics available per
individual observation as in, for example, population census data, scanner data, and text
data. Such models also arise naturally even in data with a small number of measured char-
acteristics in situations where the exact functional form with which the observed variables
enter the model is unknown and we create many technical variables, a dictionary, from the
raw characteristics. Examples covered by this scenario include semi-parametric models with
non-parametric nuisance functions. More generally, models with many parameters relative
to the sample size often arise when attempting to model complex phenomena. With increas-
ing availability of such data sets in economics and other data science fields, new methods for
analyzing those data have been developed. The Julia package HDMjl contains implemen-
tations of recently developed methods for high-dimensional approximately sparse models,
mainly relying on forms of lasso and post-lasso as well as related estimation and inference
methods. The methods are illustrated with econometric applications, but are also useful in
other disciplines such as medicine, biology, sociology or psychology.

The methods which are implemented in this package are distinct from already available
methods in other packages in the following four major ways:

1. First, we provide a version of Lasso regression that expressly handles and allows for
non-Gaussian and heteroscedastic errors.

2. Second, we implement a theoretically grounded, data-driven choice of the penalty level
𝜆 in the Lasso regressions. To underscore this choice, we call the Lasso implementa-
tion in this package “rigorous”Lasso (=rlasso). The prefix r in function names should
underscore this. In high dimensional settings cross-validation is very popular; but it
lacks a theoretical justification for use in the present context and some theoretical pro-
posals for the choice of 𝜆 are often not feasible. Moreover, the theoretically grounded,
data-driven choice redundancies cross-validation which is time-consuming particularly
in large data sets.

3. Third, we provide efficient estimators and uniformly valid confidence intervals for
various low-dimensional causal/structural parameters appearing in high-dimensional
approximately sparse models. For example, we provide efficient estimators and uni-
formly valid confidence intervals for a regression coefficient on a target variable (e.g.,
a treatment or policy variable) in a high-dimensional sparse regression model. Target
variable in this context means the object not interest, e.g. a pre-specified regression
coefficient. We also provide estimates and confidence intervals for average treatment
effect (ATE) and average treatment effect for the treated (ATET), as well extensions
of these parameters to the endogenous setting.

4. Fourth, joint/ simultaneous confidence intervals for estimated coefficients in a high-
dimensional approximately sparse models are provided, based on the methods and
theory developed in Belloni, Chernozhukov, and Kato (2014). They proposed uniformly
valid confidence regions for regressions coefficients in a high-dimensional sparse Z-
estimation problems, which include median, mean, and many other regression problems
as special cases. In this article we apply this method to the coefficients of a Lasso
regression and highlight this method with an empirical example.
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2 How to get started
Julia is an open source software project and can be freely downloaded from the julialan
g.org website along with its associated documentation. The Julia package HDMjl can be
downloaded from juliahub. To install the HDMjl package from Julia we simply type.
# ] add HDMjl

The most current version of the package (development version) can installed by
using Pkg; Pkg.add("HDMjl")

You may also install the dev version of the package by directly acquiring it from the repository
by using
# ] add https://github.com/d2cml-ai/HDMjl.jl

or
import Pkg; Pkg.add(url = "https://github.com/d2cml-ai/HDMjl.jl")

Provided that your machine has a proper internet connection and you have write permission
in the appropriate system directories, the installation of the package should proceed auto-
matically. Once the HDMjl package is installed, it can be loaded to the current Julia session
by the command
using HDMjl

3 Prediction using Approximate Sparsity
3.1 Prediction in Linear Models using Approximate Sparsity.
Consider high dimensional approximately sparse linear regression models. These models
have a large number of regressors 𝑝, possibly much larger than the sample size 𝑛, but only a
relatively small number 𝑠 = 𝑜(𝑛) of these regressors are important for capturing accurately
the main features of the regression function. The latter assumption makes it possible to
estimate these models effectively by searching for approximately the right set of regressors.

The model reads

𝑦𝑖 = 𝑥′
𝑖𝛽0 + 𝜀𝑖, 𝐸 [𝜀𝑖𝑥𝑖] = 0, 𝛽0 ∈ ℝ𝑝, 𝑖 = 1, … , 𝑛

where 𝑦𝑖 are observations of the response variable, 𝑥𝑖 = (𝑥𝑖,𝑗, … , 𝑥𝑖,𝑝)’s are observations of
𝑝-dimensional regressors, and 𝜀𝑖’s are centered disturbances, where possibly 𝑝 ≫ 𝑛. Assume
that the data sequence is i.i.d. for the sake of exposition, although the framework covered is
considerably more general. An important point is that the errors 𝜀𝑖 may be non-Gaussian
or heteroskedastic (Belloni, Chen, Chernozhukov, and Hansen, 2012).

The model can be exactly sparse, namely

‖𝛽0‖0 ≤ 𝑠 = 𝑜(𝑛)
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or approximately sparse, namely that the values of coefficients, sorted in decreasing order,
(|𝛽0|(𝑗))𝑝

𝑗=1 obey,

|𝛽0|(𝑗) ≤ A𝑗−a(𝛽0), a (𝛽0) > 1/2, 𝑗 = 1, … , 𝑝

An approximately sparse model can be well-approximated by an exactly sparse model with
sparsity index

𝑠 ∝ 𝑛1/(2𝑎(𝛽0)).

In order to get theoretically justified performance guarantees, we consider the Lasso estimator
with data-driven penalty loadings:

̂𝛽 = arg min
𝛽∈ℝ𝑝

𝔼𝑛 [(𝑦𝑖 − 𝑥′
𝑖𝛽)2] + 𝜆

𝑛‖Ψ̂𝛽‖1

where ‖𝛽‖1 = ∑𝑝
𝑗=1 ∣𝛽𝑗∣ , Ψ̂ = diag ( ̂𝜓1, … , ̂𝜓𝑝) is a diagonal matrix consisting of penalty

loadings, and En abbreviates the empirical average. The penalty loadings are chosen to
insure basic equivariance of coefficient estimates to rescaling of 𝑥𝑖,𝑗 and can also be chosen
to address heteroskedasticity in model errors. We discuss the choice of 𝜆 and Ψ̂ below.

Regularization by the l 1-norm naturally helps the Lasso estimator to avoid overfitting, but
it also shrinks the fitted coefficients towards zero, causing a potentially significant bias. In
order to remove some of this bias, consider the Post-Lasso estimator that applies ordinary
least squares to the model ̂𝑇 selected by Lasso, formally,

̂𝑇 = support( ̂𝛽) = {𝑗 ∈ {1, … , 𝑝} ∶ | ̂𝛽| > 0}.

The Post-Lasso estimate is then defined as

̃𝛽 ∈ arg min
𝛽∈ℝ𝑝

𝔼𝑛 {𝑦𝑖 −
𝑝

∑
𝑗=1

𝑥𝑖,𝑗𝛽𝑗)
2

∶ 𝛽𝑗 = 0 if ̂𝛽𝑗 = 0, ∀𝑗.

In words, the estimator is ordinary least squares applied to the data after removing the
regressors that were not selected by Lasso. The Post-Lasso estimator was introduced and
analysed in Belloni and Chernozhukov (2013).

A crucial matter is the choice of the penalization parameter 𝜆. With the right choice of
the penalty level, Lasso and Post-Lasso estimators possess excellent performance guarantees:
They both achieve the near-oracle rate for estimating the regression function, namely with
probability 1 − 𝛾 − 𝑜(1),

√𝔼𝑛 [(𝑥′
𝑖 ( ̂𝛽 − 𝛽0))

2
] ≲ √(𝑠/𝑛) log 𝑝

In high-dimensions setting, cross-validation is very popular in practice but lacks theoretical
justification and so may not provide such a performance guarantee. In sharp contrast, the
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choice of the penalization parameter 𝜆 in the Lasso and Post-Lasso methods in this package is
theoretical grounded and feasible. Therefore we call the resulting method the “rigorous”Lasso
method and hence add a prefix r to the function names.

In the case of homoscedasticity, we set the penalty loadings ̂𝜓𝑗 = √E𝑛𝑥2
𝑖,𝑗, which insures

basic equivariance properties. There are two choices for penalty level 𝜆 : the 𝑋-independent
choice and 𝑋 dependent choice. In the 𝑋-independent choice we set the penalty level to

𝜆 = 2𝑐√𝑛�̂�Φ−1(1 − 𝛾/(2𝑝)),

where Φ denotes the cumulative standard normal distribution, �̂� is a preliminary estimate
of 𝜎 =

√
𝔼𝜀2, and 𝑐 is a theoretical constant, which is set to 𝑐 = 1.1 by default for the

Post-Lasso method and 𝑐 = .5 for the Lasso method, and 𝛾 is the probability level, which is
set to 𝛾 = .1 by default. The parameter 𝛾 can be interpreted as the probability of mistakenly
not removing 𝑋 ’s when all of them have zero coefficients. In the X-dependent choice the
penalty level is calculated as

𝜆 = 2𝑐�̂�Λ(1 − 𝛾 ∣ 𝑋),

where

Λ(1 − 𝛾 ∣ 𝑋) = (1 − 𝛾) - quantile of 𝑛 ‖𝔼𝑛 [𝑥𝑖𝑒𝑖]‖∞ ∣ 𝑋,

where 𝑋 = [𝑥1, … , 𝑥𝑛]′ and 𝑒𝑖 are iid 𝑁(0, 1), generated independently from 𝑋; this quantity
is approximated by simulation. The 𝑋-independent penalty is more conservative than the
𝑋-dependent penalty. In particular the 𝑋-dependent penalty automatically adapts to highly
correlated designs, using less aggressive penalization in this case Belloni, Chernozhukov, and
Hansen (2010).

In the case of heteroskedasticity, the loadings are set to ̂𝜓𝑗 = √𝔼𝑛 [𝑥2
𝑖𝑗 ̂𝜀2

𝑖 ], where ̂𝜀𝑖 are
preliminary estimates of the errors. The penalty level can be 𝑋-independent (Belloni, Chen,
Chernozhukov, and Hansen, 2012):

𝜆 = 2𝑐√𝑛Φ−1(1 − 𝛾/(2𝑝))

or it can be X-dependent and estimated by a multiplier bootstrap procedure (Chernozhukov,
Chetverikov, and Kato, 2013)

𝜆 = 𝑐 × 𝑐𝑊 (1 − 𝛾),

where 𝑐𝑊 (1 − 𝛾) is the 1 − 𝛾-quantile of the random variable 𝑊 , conditional on the data,
where

𝑊 ∶= 𝑛 max
1≤𝑗≤𝑝

∣2𝔼𝑛 [𝑥𝑖𝑗 ̂𝜀𝑖𝑒𝑖]∣ ,

where 𝑒𝑖 are iid standard normal variables distributed independently from the data, and ̂𝜀𝑖
denotes an estimate of the residuals.
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Estimation proceeds by iteration. The estimates of residuals ̂𝜀𝑖 are initialized by running
least squares of 𝑦𝑖 on five regressors that are most correlated to 𝑦𝑖. This implies conservative
starting values for 𝜆 and the penalty loadings, and leads to the initial Lasso and Post-Lasso
estimates, which are then further updated by iteration. The resulting iterative procedure is
fully justified in the theoretical literature.

3.2 A Joint Significance Test for Lasso Regression.
A basic question frequently arising in empirical work is whether the Lasso regression has
explanatory power, comparable to a F-test for the classical linear regression model. The
construction of a joint significance test follows (Chernozhukov, Chetverikov, and Kato, 2013)
(Appendix M), and can be described as: Based on the model 𝑦𝑖 = 𝑎0 + 𝑥′

𝑖𝑏0 + 𝜀𝑖, the null
hypothesis of joint statistical in-significance is 𝑏0 = 0. The alternative is that of the joint
statistical significance: 𝑏0 ≠ 0. The null hypothesis implies that

E [(𝑦𝑖 − 𝑎0) 𝑥𝑖] = 0

and restriction can be tested using the sup-score statistic:

𝑆 = ∥√𝑛𝔼𝑛 [(𝑦𝑖 − ̂𝑎0) 𝑥𝑖]∥∞

where ̂𝑎𝑖 = 𝔼𝑛 [𝑦𝑖]. The critical value for this statistic can be approximated by the multiplier
bootstrap procedure, which simulates the statistic:

𝑆∗ = ∥√𝑛𝔼𝑛 [(𝑦𝑖 − ̂𝑎0) 𝑥𝑖𝑔𝑖]∥∞

where 𝑔𝑖 ’s are iid 𝑁(0, 1), conditional on the data. The (1 − 𝛼)-quantile of 𝑆∗ serves as the
critical value, 𝑐(1 − 𝛼). We reject the null if 𝑆 > 𝑐(1 − 𝛼) in favor of statistical significant,
and we keep the null of non-significance otherwise. This test procedure is implemented in
the package when calling the r_summary-method of rlasso-constructor.

Julia Implementation The function rlasso implements Lasso and post-Lasso, where the
prefix “r” signifies that these are theoretically rigorous versions of Lasso and post-Lasso. The
default option is post-Lasso, post=true. This function returns an constructor of rlasso
for which methods like r_predict, r_print, r_summary are provided.

lassoShooting_fit is the computational algorithm that underlies the estimation procedure,
which implements a version of the Shooting Lasso Algorithm (Fu, 1998). The user has sev-
eral options for choosing the non-default options. Specifically, the user can decide if an
unpenalized intercept should be included (true by default). The option penalty of the func-
tion rlasso allows different choices for the penalization parameter and loadings. It allows for
homoskedastic or heteroskedastic errors with default homoscedastic = false. Moreover,
the dependence structure of the design matrix might be taken into consideration for calcula-
tion of the penalization parameter with X_dependent_lambda = true. In combination with
these options, the option lambda_start allows the user to set a starting value for 𝜆 for the
different algorithms. Moreover, the user can provide her own fixed value for the penalty level
- instead of the data-driven methods discussed above - by setting homoscedastic = "none"
and supplying the value via lambda_start.
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The constants c and 𝛾 from above can be set in the option penalty. The quantities ̂𝜀, ̂𝜓, �̂�
are calculated in a iterative manner. The maximum number of iterations and the tolerance
when the algorithms should stop can be set with control.

The method r_summary of rlasso-objects displays additionally for model diagnosis the R2
value, the adjusted R2 with degrees of freedom equal to the number of selected parameters,
and the sup-score statistic for joint significance - described above - with corresponding p-
value.

Example. (Prediction Using Lasso and Post-Lasso) Consider generated data from a sparse
linear model:
using CodecXz, RData, DataFrames, StatsModels, LinearAlgebra
using Statistics, Distributions, PrettyTables, GLM, CSV

dta = get_data("seed_100")
n, p = size(dta);
Y = dta[:,1];
X = dta[:,2:end];

Next we estimate the model, print the results, and make in-sample and out-of sample pre-
dictions. We can use methods print and summarize to print the results, where the option
all can be set to false to limit the print only to the non-zero coefficients.

We can estimate the models using Lasso
lasso_reg = rlasso(X, Y, post = false);
sum_lasso = r_summary(lasso_reg)

Post-Lasso Estimation: false
Total number of variables: 100
Number of selected variables: 11
---

============ ==============
Variable Estimate

============ ==============
Intercept 0.056855
X2 4.77121
X3 4.69284
X4 4.76568
X14 -0.0453685
X16 -0.0467382
X17 -0.00499617
X20 -0.0922336
X23 -0.0272553
X41 -0.0105032
X62 0.113585
X101 -0.0247296

============ ==============

----
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Multiple R-squared: 0.9912720815874809
Adjusted R-squared: 0.9901810917859161

new_dta = get_data("seed_200")
Xnew = new_dta[:, Not(1)]
Ynew = new_dta[:, 1]
yhat_lasso_new = r_predict(lasso_reg, xnew = Matrix(Xnew))
post_lasso_reg = rlasso(X, Y, post = true)
y_hat_postlasso = r_predict(post_lasso_reg, xnew = Matrix(Xnew))
r_summary(post_lasso_reg)

Post-Lasso Estimation: true
Total number of variables: 100
Number of selected variables: 3
---

============ ============
Variable Estimate

============ ============
Intercept 0.0341043
X2 4.92413
X3 4.85787
X4 4.96442

============ ============

----
Multiple R-squared: 0.9906284190077158
Adjusted R-squared: 0.990335557101707

#in-sample prediction
yhat_postlasso = r_predict(post_lasso_reg)
#in-sample prediction;
yhat_postlasso_new = r_predict(post_lasso_reg, xnew = Matrix(Xnew));

MAE = mean(eachrow(hcat(
abs.(Ynew - yhat_lasso_new), abs.(Ynew - yhat_postlasso_new)
)))

MAE = DataFrame([[MAE[1]], [MAE[2]]], :auto)
MAE = rename!(MAE, ["lasso MAE", "Post-lasso MAE"])
pretty_table(MAE, tf = tf_simple, nosubheader = true)

============ =================
lasso MAE Post-lasso MAE

============ =================
0.879583 0.78017

============ =================

4 Inference on Target Regression Coefficient
Here we consider inference on the target coefficient 𝛼 in the model:
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𝑦𝑖 = 𝑑𝑖𝛼0 + 𝑥′
𝑖𝛽0 + 𝜖𝑖, 𝔼𝑖 (𝑥′

𝑖, 𝑑′
𝑖)

′ = 0

Here 𝑑𝑖 is a target regressor such as treatment, policy or other variable whose regression
coefficient 𝛼0 we would like to learn (Belloni, Chernozhukov, and Hansen, 2014). If we are
interested in coefficients of several or even many variables, we can simply write the model
in the above form treating each variable of interest as 𝑑𝑖 in turn and then applying the
estimation and inference procedures described below.

We assume approximate sparsity for 𝑥′
𝑖𝛽0 with sufficient speed of decay of the sorted com-

ponents of 𝛽0, namely a(𝛽0) > 1. This condition translates into having a sparsity index
𝑠 ≪ √𝑛. In general 𝑑𝑖 is correlated to 𝑥𝑖, so 𝛼0 cannot be consistently estimated by the
regression of 𝑦𝑖 on 𝑑𝑖. To keep track of the relationship of 𝑑𝑖 to 𝑥𝑖, write

𝑑𝑖 = 𝑥′
𝑖𝜋𝑑

0 + 𝜌𝑑
𝑖 , 𝔼𝜌𝑑

𝑖 𝑥𝑖 = 0

To estimate 𝛼0, we also impose approximate sparsity on the regression function 𝑥′
𝑖𝜋𝑑

0 with
sufficient speed of decay of sorted components of 𝜋𝑑

0 , namely a(�^d_0) > 1$.

The Orthogonality Principle. Note that we can not use naive estimates of 𝛼0 based
simply on applying Lasso and Post-Lasso to the first equation. Such a strategy in general
does not produce root-𝑛 consistent and asymptotically normal estimators of 𝛼, due to the
possibility of large omitted variable bias resulting from estimating the nuisance function 𝑥′

𝑖𝛽0
in high-dimensional setting. In order to overcome the omitted variable bias, we need to use
orthogonalized estimating equations for 𝛼0. Specifically we seek to find a score 𝜓 (𝑤𝑖, 𝛼, 𝜂),
where 𝑤𝑖 = (𝑦𝑖, 𝑥′

𝑖)′ and 𝜂 is the nuisance parameter, such that

𝔼𝜓(𝑤𝑖, 𝛼0, 𝜂0) = 0, 𝜕
𝜕𝜂𝔼𝜓(𝑤𝑖, 𝛼0, 𝜂0) = 0

The second equation is the orthogonality condition, which states that the equations are not
sensitive to the first-order perturbations of the nuisance parameter 𝜂 near the true value. The
latter property allows estimation of these nuisance parameters 𝜂0 by regularized estimators
̂𝜂, where regularization is done via penalization or selection. Without this property, regu-

larization may have too much effect on the estimator of 𝛼0 for regular inference to proceed.
The estimators 𝛼 of 𝛼0 solve the empirical analog of the equation above,

𝔼𝑛𝜓(𝑤𝑖, ̂𝛼, ̂𝜂) = 0,

where we have plugged in the estimator ̂𝜂 for the nuisance parameter.

Due to the orthogonality property the estimator is first-order equivalent to the infeasible
estimator ̃𝛼 solving

𝔼𝑛𝜓(𝑤𝑖, ̃𝛼, 𝜂0) = 0,

where we use the true value of the nuisance parameter. The equivalence holds in a variety
of models under plausible conditions. The systematic development of the orthogonality
condition for inference on low-dimensional parameters in modern high-dimensional settings
is given in Chernozhukov, Hansen, and Spindler (2015a).
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In turns out that in the linear model the orthogonal equations are closely connected to the
classical ideas of partialling out.

4.1 Intuition for the Orthogonality Principle in Linear Models via
Partialling Out.

One way to think about estimation of 𝛼0 is to think of the regression model:

𝜌𝑦
𝑖 = 𝛼0𝜌𝑑

𝑖 + 𝜖𝑖

where 𝜌𝑦
𝑖 is the residual that is left after partialling out the linear effect of 𝑥𝑖 from 𝑦𝑖 and 𝜌𝑑

𝑖
is the residual that is left after partialling out the linear effect of 𝑥𝑖 from 𝑑𝑖, both done in
the population. Note that we have 𝔼𝜌𝑦

𝑖 𝑥𝑖 = 0, i.e. 𝜌𝑦
𝑖 = 𝑦𝑖 − 𝑥′

𝑖𝜋𝑦
0 where 𝑥′

𝑖𝜋𝑦
0 is the linear

projection of 𝑦𝑖 on 𝑥𝑖. After partialling out, 𝛼0 is the population regression coefficient in the
univariate regression of 𝜌𝑦

𝑖 on 𝜌𝑑
𝑖 . This is the Frisch-Waugh-Lovell theorem. Thus, 𝛼 = 𝛼0

solves the population equation:

𝔼 (𝜌𝑦
𝑖 − 𝛼𝜌𝑑

𝑖 ) 𝜌𝑑
𝑖 = 0

The score associated to this equation is:

𝜓 (𝑤𝑖, 𝛼, 𝜂) = (𝑦𝑖 − 𝑥′
𝑖𝜋𝑦) − 𝛼 (𝑑𝑖 − 𝑥′

𝑖𝜋𝑑)) (𝑑𝑖 − 𝑥′
𝑖𝜋𝑑) , 𝜂 = (𝜋𝑦′, 𝜋𝑑′)′ ,

𝜓 (𝑤𝑖, 𝛼0, 𝜂0) = (𝜌𝑦
𝑖 − 𝛼𝜌𝑑

𝑖 ) 𝜌𝑑
𝑖 , 𝜂0 = (𝜋𝑦′

0 , 𝜋𝑑′
0 ) .

It is straightforward to check that this score obeys the orthogonality principle; moreover,
this score is the semi-parametrically efficient score for estimating the regression coefficient
𝛼0.

In low-dimensional settings, the empirical version of the partialling out approach is
simply another way to do the least squares. Let’s verify this in an example. First, we
generate some data
dta = get_data("seed_300")
n, p = size(dta);
y = dta[:,"y"];
d = dta[:,"d"];
x = dta[:,3:end];

We can estimate 𝛼0 by running full least squares:
full_fit = lm(hcat(ones(length(y)), Matrix(dta[:,2:end])), y);
DataFrame(

Estimate = coef(full_fit)[2],
Std_Error = stderror(full_fit)[2])

1×2 DataFrame
Row � Estimate Std_Error

� Float64 Float64
���������������������������
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1 � 0.978075 0.0137122

Another way to estimate 𝑎𝑙𝑝ℎ𝑎0 is to first partial out the x-variables from 𝑦𝑖 and 𝑑𝑖, and
run least squares on the residuals:
rY_1 = lm(hcat(ones(length(y)), Matrix(dta[:,3:end])), y);
rY = y - predict(rY_1)
rD_1 = lm(hcat(ones(length(y)), Matrix(dta[:,3:end])), d);
rD = d - predict(rD_1);
partial_fit_ls = lm(hcat(ones(length(y)), rD), rY)
DataFrame(

Estimate = coef(partial_fit_ls)[2],
Std_Error = stderror(partial_fit_ls)[2]
)

1×2 DataFrame
Row � Estimate Std_Error

� Float64 Float64
���������������������������

1 � 0.978075 0.0136862

One can see that the estimates are identical, while standard errors are nearly identical. In
fact, the standard errors are asymptotically equivalent due to the orthogonality property of
the estimating equations associated with the partialling out approach.

In high-dimensional settings, we can no longer rely on the full least-squares and instead
may rely on Lasso or Post-Lasso for partialling out. This amounts to using orthogonal
estimating equations, where we estimate the nuisance parameters by Lasso or Post-Lasso.
Let’s try this in the above example, using Post-Lasso for partialling out:
rY_1 = rlasso(hcat(ones(length(y)), Matrix(dta[:,3:end])), y);
rY = rY_1["residuals"]
rD_1 = rlasso(hcat(ones(length(y)), Matrix(dta[:,3:end])), d);
rD = rD_1["residuals"]
partial_fit_postlasso = lm(hcat(ones(length(y)), rD), vec(rY))
DataFrame(

Estimate = coef(partial_fit_postlasso)[2],
Std_Error = stderror(partial_fit_postlasso)[2]
)

1×2 DataFrame
Row � Estimate Std_Error

� Float64 Float64
���������������������������

1 � 0.972739 0.0136868

We see that this estimate and standard errors are nearly identical to the previous estimates
given above. In fact they are asymptotically equivalent to the previous estimates in the
low-dimensional settings, with the advantage that, unlike the previous estimates, they will
continue to be valid in the high-dimensional settings.

The orthogonal estimating equations method ’ based on partialling out via Lasso or post-
Lasso ’ is implemented by the function rlassoEffect, using method= "partialling out":
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Eff = rlassoEffect(x, y, d, method = "partialling out");
r_summary(Eff);

Estimates and significance testing of the effect of target variables
Row Estimate. Std. Error t value Pr(>|t|)

1 0.97274 0.01369 71.05478 0.0 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Another orthogonal estimating equations method ’ based on the double selection of covariates
’ is implemented by the the function rlassoEffect, using method= "double selection".
Algorithmically the method is as follows:

1. Select controls 𝑥𝑖𝑗’s that predict 𝑦𝑖 by Lasso.
2. Select controls 𝑥𝑖𝑗’s that predict 𝑑𝑖 by Lasso.
3. Run OLS of 𝑦𝑖 on 𝑑𝑖 and the union of controls selected in steps 1 and 2.

Eff = rlassoEffect(x, y, d, method = "double selection");
r_summary(Eff);

Estimates and significance testing of the effect of target variables
Row Estimate. Std. Error t value Pr(>|t|)

1 0.97807 0.01416 69.07274 0.0 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4.2 Inference: Confidence Intervals and Significance Testing.
The function rlassoEffects does inference ’ namely construction of confidence intervals
and significance testing ’ for target variables. Those can be specified either by the variable
names, an integer valued vector giving their position in 𝑥 or by a logical vector indicating
the variables for which inference should be conducted. It returns an object of S3 class
rlassoEffects for which the methods r_summary, r_print, and r_confint are provided.
rlassoEffects is a wrap function for the function rlassoEffect which does inference for a
single target regressor. The theoretical underpinning is given in Belloni, Chernozhukov, and
Hansen (2014) and for a more general class of models in Belloni, Chernozhukov, and Kato
(2014). The function rlassoEffects might either be used in the form rlassoEffects(x,
y, index) where x is a matrix, y denotes the outcome variable and index specifies the
variables of x for which inference is conducted. This can done by an integer vector (postion
of the variables), a logical vector or the name of the variables. An alternative usage is
as rlassoEffects(formula, data, I) where I is a one-sided formula which specifies the
variables for which is inference is conducted. For further details we refer to the help page of
the function and the following examples where both methods for usage are shown.

Here is an example of the use.
data = get_data("seed_400")
n, p = size(data);
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y = data[:,1];
#d = dta[:,"d"];
x = data[:,2:end];

We can do inference on a set of variables of interest, e.g. the first, second, third, and the
fiftieth:
lasso_effects = rlassoEffects(x, y, index = [1,2,3,50]);

r_print(lasso_effects, digits = 4)

Coefficients:

X1 X2 X3 X50

2.9445 3.0413 2.9754 0.072
r_summary(lasso_effects);

Estimates and significance testing of the effect of target variables
Estimate. Std. Error t value Pr(>|t|)

X1 2.94448 0.08815 33.40306 0.0 ***
X2 3.04127 0.08389 36.25307 0.0 ***
X3 2.9754 0.07804 38.1266 0.0 ***

X50 0.07196 0.07765 0.92672 0.35407
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r_confint(lasso_effects);

2.5% 97.5%

X1 2.77171 3.11724
X2 2.87685 3.2057
X3 2.82245 3.12836

X50 -0.0802271 0.224138

The two methods are first-order equivalent in both low-dimensional and high-dimensional
settings under regularity conditions. Not surprisingly we see that in the numerical example
of this section, the estimates and standard errors produced by the two methods are very
close to each other.

It is also possible to estimate joint confidence intervals. The method relies on a multiplier
bootstrap method as described in Belloni, Chernozhukov, and Kato (2014). Joint confidence
intervals can be invoked by setting the option joint to true in the method confint for
objects of class rlassoEffects.
r_confint(lasso_effects, joint = true);

2.5% 97.5%
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X1 2.7259 3.16305
X2 2.83519 3.24736
X3 2.7815 3.16931

X50 -0.117222 0.261132

We will also demonstrate the application of joint confidence intervals in an empirical appli-
cation in the next section.

For logistic regression we provide the functions rlassologit and rlassologitEffects.

4.3 Application: the effect of gender on wage.
In Labour Economics an important question is how the wage is related to the gender of the
employed. We use US census data from the year 2012 to analyse the effect of gender and
interaction effects of other variables with gender on wage jointly. The dependent variable
is the logarithm of the wage, the target variable is female (in combination with other
variables). All other variables denote some other socio-economic characteristics, e.g. marital
status, education, and experience. For a detailed description of the variables we refer to the
help page.

First, we load and prepare the data.
cps2012 = get_data("cps2012")
n, p = size(cps2012);
size(cps2012)

## Two parts X <- model.matrix(~-1 + female + female:(widowed + divorced +
## separated + nevermarried + hsd08 + hsd911 + hsg + cg + ad + mw +
## so + we + exp1 + exp2 + exp3)

x_formula1 = @formula(
lnw ~ female + female &

(widowed + divorced + separated + nevermarried +
hsd08 + hsd911 + hsg + cg + ad + mw + so + we +
exp1 + exp2 + exp3)

)
y, x1 = data_formula(x_formula1, cps2012);

# (widowed + divorced + separated + nevermarried + hsd08 + hsd911 + hsg
# + cg + ad + mw + so + we + exp1 + exp2 + exp3)^2

x0 = data_formula(x_names = ["widowed", "divorced", "separated",
"nevermarried", "hsd08", "hsd911", "hsg", "cg", "ad", "mw", "so",
"we", "exp1", "exp2", "exp3"],
y_name = "lnw", Data = cps2012)

x = hcat(x1, x0);

index_gender = []
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female = findfirst.("female", names(x))
for i in eachindex(female)

if isnothing(female[i])
continue

else
append!(index_gender, i)

end
end
y = cps2012.lnw;

["female", "female & widowed", "female & divorced", "female & separated", "
female & nevermarried", "female & hsd08", "female & hsd911", "female & hsg"
, "female & cg", "female & ad", "female & mw", "female & so", "female & we"
, "female & exp1", "female & exp2", "female & exp3"]

The parameter estimates for the target parameters, i.e. all coefficients related to gender
(i.e. by interaction with other variables) are calculated and summarized by the following
commands
effects_female = rlassoEffects(x, y, index = index_gender);
r_summary(effects_female);

Estimates and significance testing of the effect of target variables
Estimate. Std. Error t value Pr(>|t|)

female -0.17712 0.0363 -4.87934 0.0 ***
female & widowed 0.1361 0.09066 1.50121 0.1333

female & divorced 0.13694 0.02218 6.17403 0.0 ***
female & separated 0.0233 0.05321 0.43789 0.66147

female & nevermarried 0.18685 0.01994 9.37061 0.0 ***
female & hsd08 0.02781 0.12091 0.23001 0.81808

female & hsd911 -0.11492 0.05151 -2.23102 0.02568 *
female & hsg -0.01245 0.01922 -0.64776 0.51714
female & cg 0.01014 0.01833 0.55319 0.58013
female & ad -0.03046 0.02181 -1.39661 0.16253
female & mw -0.00215 0.01918 -0.1121 0.91074
female & so -0.00818 0.01936 -0.42252 0.67265
female & we -0.00423 0.02117 -0.19981 0.84163

female & exp1 0.00494 0.0078 0.63333 0.52652
female & exp2 -0.15952 0.0453 -3.52141 0.00043 ***
female & exp3 0.03845 0.00786 4.89186 0.0 ***

---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Finally, we estimate and plot confident intervals, first ”pointwise” and then the joint confi-
dence intervals.
joint_CI = r_confint(effects_female, 0.95, joint = true);
joint_CI;

15



2.5% 97.5%

female -0.280547 -0.0736905
female & widowed -0.140635 0.412826

female & divorced 0.0731928 0.200686
female & separated -0.120331 0.166937

female & nevermarried 0.127771 0.245936
female & hsd08 -0.384888 0.440508

female & hsd911 -0.267985 0.0381524
female & hsg -0.0660714 0.0411813
female & cg -0.0430194 0.0632965
female & ad -0.0975245 0.036597
female & mw -0.0570876 0.0527936
female & so -0.0641286 0.0477619
female & we -0.0672138 0.0587615

female & exp1 -0.0170486 0.0269191
female & exp2 -0.287362 -0.0316769
female & exp3 0.0162901 0.060611

This analysis allows a closer look how discrimination according to gender is related to other
socio- economic variables.

4.4 Application: Estimation of the treatment effect in a linear
model with many confounding factors.

A part of empirical growth literature has focused on estimating the effect of an initial (lagged)
level of GDP (Gross Domestic Product) per capita on the growth rates of GDP per capita.
In particular, a key prediction from the classical Solow-Swan-Ramsey growth model is the
hypothesis of convergence, which states that poorer countries should typically grow faster
and therefore should tend to catch up with the richer countries, conditional on a set of in-
stitutional and societal characteristics. Covariates that describe such characteristics include
variables measuring education and science policies, strength of market institutions, trade
openness, savings rates and others.

Thus, we are interested in a specification of the form:

𝑦𝑖 = 𝛼0𝑑𝑖 +
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗 + 𝜀𝑖,

where 𝑦𝑖 is the growth rate of GDP over a specified decade in country 𝑖, 𝑑𝑖 is the log of the
initial level of GDP at the beginning of the specified period, and the 𝑥′

𝑖𝑗𝑠 form a long list
of country 𝑖’s characteristics at the beginning of the specified period. We are interested in
testing the hypothesis of convergence, namely that 𝛼1 < 0. Given that in the Barro and
Lee (1994) data, the number of covariates 𝑝 is large relative to the sample size 𝑛, covariate
selection becomes a crucial issue in this analysis. We employ here the partialling out approach
(as well as the double selection version) introduced in the previous section.

First, we load and prepare the data
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GrowthData = get_data("GrowthData")
y = GrowthData[:, 1];
d = GrowthData[:, 3:3];
X = Matrix(GrowthData[:, Not(1, 2, 3)]);
X_1 = Matrix(GrowthData[:, Not(1, 2)]);

Now we can estimate the effect of the initial GDP level. First, we estimate by OLS:
Q, R = qr(hcat(ones(length(y)), X_1))
beta_i = pinv(hcat(ones(length(y)), X_1)) * y

res = y - hcat(ones(length(y)), X_1) * beta_i;
n = size(hcat(ones(length(y)), X_1))[1]
k = size(hcat(ones(length(y)), X_1))[2]

sigma2_hat = (res' * res) / (n - k)
vcov_beta_hat = sigma2_hat .* inv(

hcat(ones(length(y)), X_1)' * hcat(ones(length(y)), X_1)
);

se = sqrt.(diag(vcov_beta_hat))

ls_effect = DataFrame(Estimate = beta_i, stderror = se);

Second, we estimate the effect by the partialling out by Post-Lasso:
lasso_effect = rlassoEffect(X, y, d, method = "partialling out");
r_summary(lasso_effect);

Estimates and significance testing of the effect of target variables
Row Estimate. Std. Error t value Pr(>|t|)

1 -0.04981 0.01394 -3.57317 0.00035 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Third, we estimate the effect by the double selection method:
double_effect = rlassoEffect(X, y, d, method = "double selection");
r_summary(double_effect);

Estimates and significance testing of the effect of target variables
Estimate. Std. Error t value Pr(>|t|)

gdpsh465 -0.05001 0.01579 -3.16719 0.00154 **
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then collect results in a nice table:
table = zeros(3,2)
table[1,:] = [
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round(Matrix(ls_effect)[2,1], digits = 2),
round.(Matrix(ls_effect)[2,2], digits = 5)
]

table[2,:] = [
round(lasso_effect.coefficients, digits =2),
round(lasso_effect.se, digits = 5)
]

table[3,:] = [
round(double_effect.coefficients, digits =2),
round(double_effect.se, digits = 5)
];

index = ["full reg via ols", "partial reg
via post-lasso ", "partial reg via double selection"]
pretty_table(

hcat(index, table), show_row_number = false,
header = [" ", "Estimate", "Std. Error"],
tf = tf_simple, nosubheader = true
)

=================================== ========== =============
Estimate Std. Error

=================================== ========== =============
full reg via ols -0.01 0.02989

partial reg\nvia post-lasso -0.05 0.01394
partial reg via double selection -0.05 0.01579

=================================== ========== =============

We see that the OLS estimates are noisy, which is not surprising given that 𝑝 is comparable
to 𝑛. The partial regression approaches, based on Lasso selection of covariates in the two
projection equations, in contrast yields much more precise estimates, which does support
the hypothesis of conditional convergence. We note that the partial regression approaches
represent a special case of the orthogonal estimating equations approach.

5 Instrumental Variable Estimation in a High-
Dimensional Setting

In many applied settings the researcher is interested in estimating the (structural) effect of a
variable (treatment variable), but this variable is endogenous, i.e. correlated with the error
term. In this case, instrumental variables (IV) methods are used for identification of the
causal parameters.

We consider the linear instrumental variables model:

𝑦𝑖 = 𝛼0𝑑𝑖 + 𝛾0𝑥′
𝑖 + 𝜖𝑖,

𝑑𝑖 = 𝑧′
𝑖 ∏ +𝛽0𝑥′

𝑖 + 𝜈𝑖,
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where 𝔼 [𝜖𝑖(𝑥′
𝑖, 𝑧′

𝑖)] = 0, 𝔼 [𝜈(𝑥′
𝑖, 𝑧′

𝑖)] = 0, but 𝔼[𝜖𝑖, 𝜈𝑖] ≠ 0 leading to endogeneity. In
this setting 𝑑𝑖 is a scalar endogenous variable of interest, 𝑧𝑖 is a pz-dimensional vector of
instruments and 𝑥𝑖 is a px-dimensional vector of control variables.

In this section we present methods to estimate the effect 𝛼0 in a setting where either x is
high-dimensional or z is high-dimensional. Instrumental variables estimation with very many
instruments was analysed in Belloni, Chen, Chernozhukov, and Hansen (2012), the extension
with many instruments and many controls in Chernozhukov, Hansen, and Spindler (2015b).

5.1 Estimation and Inference.
To get efficient estimators and uniformly valid confidence intervals for the structural param-
eters there are different strategies which are asymptotically equivalent where again orthogo-
nalization (via partialling out) is a key concept.

In the case of the high-dimensional instrument 𝑧𝑖 and low-dimensional 𝑥𝑖. We predict the
endogenous variable 𝑑𝑖 using (Post-)Lasso regression of 𝑑𝑖 on the instruments 𝑧𝑖 and 𝑥𝑖,
forcing the inclusion of 𝑥𝑖. Then we compute the IV estimator (2SLS) ̂𝛼 of the parameter
𝛼0 using the predicted value ̂𝑑𝑖 as instrument and using 𝑥′

𝑖s as controls. We then perform
inference on 𝛼0 using ̂𝛼 and conventional heteroskedasticity robust standard errors.

In the case of the low-dimensional instrument 𝑧𝑖 and high-dimensional 𝑥𝑖, we first partial
out the effect of 𝑥𝑖 from 𝑑𝑖, 𝑦𝑖, and 𝑧𝑖 by (Post-)Lasso. Second, we then use the residuals to
compute the IV estimator (2SLS) ̂𝛼 of the parameter �0. We then perform inference on 𝛼0
using ̂𝛼 and conventional heteroskedasticity robust standard errors.

In the case of the high-dimensional instrument 𝑧𝑖 and high-dimensional 𝑥𝑖 the algorithm
described in Chernozhukov, Hansen, and Spindler (2015b) is adopted.

Julia Implementation. The wrap function rlassoIV handles all of the previous cases.
It has the options select.X and select.Z which implement selection of either covariates or
instruments, both with default values set to true. The class of the return object depends on
the chosen options, but the methods summary, print and confint are available for all. The
functions rlassoSelectX and rlassoSelectZ do selection on x-variables only and z-variables
only. Selection on both is done in rlassoIV. All functions employ the option post=true
as default, which uses post-Lasso for partialling out. By setting post=true we can employ
Lasso instead of Post-Lasso. Finally, the package provides the standard function tsls, which
implements the “classical” two-stage least squares estimation.

Function usage both the family of rlassoIV-functions and the family of the functions for
treatment effects , which are introduced in the next section, allow use with both formula-
interface and by handing over the prepard model matrices. Hence the general pattern for
use with formula is function(formula, data, …) where formula consists of two-parts and is a
member of the class Formula. These formulas are of the pattern y d + x | x + z where y
is the outcome variable, x are exogenous variables, d endogenous varialbes (if several ones
are allowed depends on the concrete function), and z denote the instrumental variables. A
more primitive use of the functions is by simply hand over the required group of variables as
matrices: function(x=x, d=d, y=y, z=z). In some of the following examples both alternatives
are displayed.
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5.2 Application: Economic Development and Institutions.
Estimating the causal effect of institutions on output is complicated by the simultaneity
between institutions and output: specifically, better institutions may lead to higher incomes,
but higher incomes may also lead to the development of better institutions. To help overcome
this simultaneity, Acemoglu, Johnson, and Robinson (2001) use mortality rates for early
European settlers as an instrument for institution quality. The validity of this instrument
hinges on the argument that settlers set up better institutions in places where they are more
likely to establish long-term settlements, that where they are likely to settle for the long term
is related to settler mortality at the time of initial colonization, and that institutions are
highly persistent. The exclusion restriction for the instrumental variable is then motivated by
the argument that GDP, while persistent, is unlikely to be strongly influenced by mortality
in the previous century, or earlier, except through institutions.

In this application, we consider the problem of selecting controls. The input raw controls are
the Latitude and the continental dummies. The technical controls can include various poly-
nomial transformations of the Latitude, possibly interacted with the continental dummies.
Such flexible specifications of raw controls results in the high-dimensional x, with dimension
comparable to the sample size.

First, we process the data
AJR = get_data("AJR")
y = AJR[!,"GDP"]
d = AJR[!, 2]
z = AJR[!,"logMort"];
x_formula = @formula(GDP ~ -1 + Latitude + Latitude2 + Africa + Asia +

Namer + Samer + Latitude*Latitude2 + Latitude*Africa +
Latitude*Asia + Latitude*Namer + Latitude*Samer + Latitude2*Africa +
Latitude2*Asia + Latitude2*Namer + Latitude2*Samer + Africa*Asia
+ Africa*Namer + Africa*Samer + Asia*Namer + Asia*Samer
+ Namer*Samer
)

y, x = data_formula(x_formula, AJR)
size(x)

Any["Latitude", "Latitude2", "Africa", "Asia", "Namer", "Samer", "Latitude
& Latitude2", "Latitude & Africa", "Latitude & Asia", "Latitude & Namer", "
Latitude & Samer", "Latitude2 & Africa", "Latitude2 & Asia", "Latitude2 & N
amer", "Latitude2 & Samer", "Africa & Asia", "Africa & Namer", "Africa & Sa
mer", "Asia & Namer", "Asia & Samer", "Namer & Samer"]
(64, 21)

Then we estimate an IV model with selection on the X
AJR_Xselect = rlassoIV(x, d, y, z, select_X=true, select_Z=false);
r_summary(AJR_Xselect);

Estimates and Significance Testing of the effect of target variables in the
IV regression model

coeff. se. t-value p-value

d1 0.84503 0.26993 3.13055 0.00174 **
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---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r_confint(AJR_Xselect);

2.5% 97.5%

d1 0.315981 1.37407

It is interesting to understand what the procedure above is doing. In essence, it partials out
𝑥𝑖 from 𝑦𝑖, 𝑑𝑖 and 𝑧𝑖 using Post-Lasso and applies the 2SLS to the residual quantities. Let
us investigate partialling out in more detail in this example. We can first try to use OLS for
partialling out:
rY_1 = lm(@formula(

GDP ~ Latitude + Latitude2 + Africa + Asia + Namer + Samer +
Latitude*Latitude2 + Latitude*Africa + Latitude*Asia +
Latitude*Namer + Latitude*Samer + Latitude2*Africa +
Latitude2*Asia + Latitude2*Namer + Latitude2*Samer +
Africa*Asia + Africa*Namer + Africa*Samer + Asia*Namer +
Asia*Samer + Namer*Samer), AJR
)

rY = y - predict(rY_1)

rD_1 = lm(@formula(
Exprop ~ Latitude + Latitude2 + Africa + Asia + Namer + Samer +
Latitude*Latitude2 + Latitude*Africa + Latitude*Asia +
Latitude*Namer + Latitude*Samer + Latitude2*Africa +
Latitude2*Asia + Latitude2*Namer + Latitude2*Samer +
Africa*Asia + Africa*Namer + Africa*Samer + Asia*Namer +
Asia*Samer + Namer*Samer), AJR
)

rD = d - predict(rD_1)

rZ_1 = lm(@formula(
logMort ~ Latitude + Latitude2 + Africa + Asia + Namer + Samer +
Latitude*Latitude2 + Latitude*Africa + Latitude*Asia +
Latitude*Namer + Latitude*Samer + Latitude2*Africa +
Latitude2*Asia + Latitude2*Namer + Latitude2*Samer +
Africa*Asia + Africa*Namer + Africa*Samer + Asia*Namer +
Asia*Samer + Namer*Samer), AJR
)

rZ = z - predict(rZ_1);

ivfit_lm = tsls(rD, rY, rZ, nothing, intercept=false)
DataFrame(Estimate = ivfit_lm["coefficients"][1,2],

Std_Error = ivfit_lm["se"])

1×2 DataFrame
Row � Estimate Std_Error
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� Float64 Float64
���������������������������

1 � 1.26721 1.73054

We see that the estimates exhibit large standard errors. The imprecision is expected because
dimension of x is quite large, comparable to the sample size.

Next, we replace the OLS operator by post-Lasso for partialling out
x_formula1 = @formula(GDP ~ Latitude + Latitude2 + Africa + Asia +

Namer + Samer + Latitude*Latitude2 + Latitude*Africa +
Latitude*Asia + Latitude*Namer + Latitude*Samer +
Latitude2*Africa + Latitude2*Asia + Latitude2*Namer +
Latitude2*Samer + Africa*Asia + Africa*Namer + Africa*Samer
+ Asia*Namer + Asia*Samer + Namer*Samer
)

y, xx = data_formula(x_formula1, AJR)

rY_1 = rlasso(xx, y);
rY = rY_1["residuals"]
rD_1 = rlasso(xx, d);
rD = rD_1["residuals"]
rZ_1 = rlasso(xx, z);
rZ = rZ_1["residuals"]

ivfit_lasso = tsls(rD, rY, rZ)
DataFrame(

Estimate = ivfit_lasso["coefficients"][1,2],
Std_Error = ivfit_lasso["se"][1]
)

["Latitude", "Latitude2", "Africa", "Asia", "Namer", "Samer", "Latitude & L
atitude2", "Latitude & Africa", "Latitude & Asia", "Latitude & Namer", "Lat
itude & Samer", "Latitude2 & Africa", "Latitude2 & Asia", "Latitude2 & Name
r", "Latitude2 & Samer", "Africa & Asia", "Africa & Namer", "Africa & Samer
", "Asia & Namer", "Asia & Samer", "Namer & Samer"]
1×2 DataFrame
Row � Estimate Std_Error

� Float64 Float64
���������������������������

1 � 0.845027 0.272094

This is exactly what command rlassoIV is doing by calling the command rlassoSelectX,
so the numbers we see are identical to those reported first. In comparison to OLS results,
we see precision is improved by doing selection on the exogenous variables.
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5.3 Application: Impact of Eminent Domain Decisions on Eco-
nomic Outcomes.

Here we investigate the effect of pro-plaintiff decisions in cases of eminent domain (govern-
ment’s takings of private property) on economic outcomes. The analysis of the effects of such
decisions is complicated by the possible endogeneity between judicial decisions and poten-
tial economic outcomes. To address the potential endogeneity, we employ an instrumental
variables strategy based on the random assignment of judges to the federal appellate panels
that make the decisions. Because judges are randomly assigned to three-judge panels, the
exact identity of the judges and their demographics are randomly assigned conditional on
the distribution of characteristics of federal circuit court judges in a given circuit-year.

Under this random assignment, the characteristics of judges serving on federal appellate
panels can only be related to property prices through the judges’ decisions; thus the judge’s
characteristics will plausibly satisfy the instrumental variable exclusion restriction. For fur-
ther information on this application and the data set we refer to Chen and Yeh (2010) and
Belloni, Chen, Chernozhukov, and Hansen (2012).

First, we load the data a construct the matrices with the controls (x), instruments (z),
outcome (y),and treatment variables (d). Here we consider regional GDP as the outcome
variable.
EminentDomain = get_data("EminentDomain")
z = EminentDomain["logGDP"]["z"];
x = EminentDomain["logGDP"]["x"];
d = EminentDomain["logGDP"]["d"];
y = EminentDomain["logGDP"]["y"];
x = x[:, (mean(x, dims = 1) .> 0.05)'];
z = z[:, (mean(z, dims = 1) .> 0.05)'];

As mentioned above, 𝑦 is the economic outcome, the logarithm of the GDP, d the number of
pro plaintiff appellate takings decisions in federal circuit court 𝑐 and year 𝑡, 𝑥 is a matrix with
control variables, and 𝑧 is the matrix with instruments. Here we consider socio-economic
and demographic characteristics of the judges as instruments.

First, we estimate the effect of the treatment variable by simple OLS and 2SLS using two
instruments:
ED_ols = lm(hcat(ones(length(vec(y))), hcat(d, x)), vec(y));
ED_2sls = tsls(d, y, z[:,1:2], x, intercept = false);

Next, we estimate the model with selection on the instruments
lasso_IV_Z = rlassoIV(x, d, y, z, select_X = false, select_Z = true);
r_summary(lasso_IV_Z);

Estimates and Significance Testing of the effect of target variables in the
IV regression model

coeff. se. t-value p-value

d1 0.4146 0.29025 1.42842 0.15317
---
Signif. codes:
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0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r_confint(lasso_IV_Z);

2.5% 97.5%

d1 -0.154276 0.98348

Finally, we do selection on both the x and z variables.
lasso_IV_XZ = rlassoIV(x, d, y, z, select_X = true, select_Z = true);
r_summary(lasso_IV_XZ)

Estimates and Significance Testing of the effect of target variables in the
IV regression model

coeff. se. t-value p-value

d1 -0.02383 0.12851 -0.18543 0.85289
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1×5 DataFrame
Row � coeff. se. t-value p-value

� Any Any Any Any Any
�������������������������������������������������

1 � d1 -0.02383 0.12851 -0.18543 0.85289
r_confint(lasso_IV_XZ);

2.5% 97.5%

d1 -0.275703 0.228033

Comparing the results we see, that the OLS estimates indicate that the influence of pro
plaintiff appellate takings decisions in federal circuit court is significantly positive, but the
2SLS estimates which account for the potential endogeneity render the results insignificant.
Employing selection on the instruments yields similar results. Doing selection on both the
x- and z-variables results in extremely imprecise estimates.

Finally, we compare all results
table = zeros(4,2)
table[1,:] = [coef(ED_ols)[2], stderror(ED_ols)[2]];
table[2,:] = [ED_2sls["coefficients"][1,2], ED_2sls["se"][1]];
table[3,:] = Matrix(r_summary(lasso_IV_Z)[:,2:3]);
table[4, :] = Matrix(r_summary(lasso_IV_XZ)[:, 2:3]);
index = [

"ols regression", "IV estimation ",
"selection on Z", "selection on X and Z"
]

pretty_table(
hcat(index, table),
show_row_number = false, header = [" ", "Estimate", "Std. Error"],
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tf = tf_simple, nosubheader = true)

Estimates and Significance Testing of the effect of target variables in the
IV regression model

coeff. se. t-value p-value

d1 0.4146 0.29025 1.42842 0.15317
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Estimates and Significance Testing of the effect of target variables in the
IV regression model

coeff. se. t-value p-value

d1 -0.02383 0.12851 -0.18543 0.85289
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
======================= ============ =============

Estimate Std. Error
======================= ============ =============

ols regression 0.00786473 0.00986593
IV estimation -0.0107097 0.0337652
selection on Z 0.4146 0.29025

selection on X and Z -0.02383 0.12851
======================= ============ =============

6 Inference on Treatment Effects in a High-Dimensional
Setting

In this section, we consider estimation and inference on treatment effects when the treat-
ment variable 𝑑 enters non-separably in determination of the outcomes. This case is more
complicated than the additive case, which is covered as a special case of Section 3. However,
the same underlying principle ’ the orthogonality principle ’ applies for the estimation and
inference on the treatment effect parameters. Estimation and inference of treatment effects
in a high-dimensional setting is analysed in Belloni, Chernozhukov, Fern´andez-Val, and
Hansen (2013).

6.1 Treatment Effects Parameters ’ a short Introduction.
In many situations researchers are asked to evaluate the effect of a policy intervention. Exam-
ples are the effectiveness of a job related training program or the effect of a newly developed
drug. We consider n units or individuals, 𝑖 = 1, … , 𝑛. For each individual we observe the
treatment status. The treatment variable 𝐷𝑖 takes the value 1, if the unit received (active)
treatment, and 0, if it received the control treatment. For each individual we observe the
outcome for only one of the two potential treatment states. Hence, the observed outcome
depends on the treatment status and is denoted by 𝑌𝑖(𝐷𝑖). One important parameter of
interest is the average treatment effect (ATE):
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𝔼[𝑌 (1) − 𝑌 (0)] = 𝔼[𝑌 (1)] − 𝔼[𝑌 (0)].

This quantity can be interpreted as the average effect of the policy intervention.

Researchers might also be interested in the average treatment effect on the treated (ATET)
given by

𝔼[𝑌 (1) − 𝑌 (0)|𝐷 = 1] = 𝔼[𝑌 (1)|𝐷 = 1] − 𝔼[𝑌 (0)|𝐷 = 1].

This is the average treatment effect restricted to the population the treated individuals.
When treatment 𝐷 is randomly assigned conditional on confounding factors X, the ATE
and ATET can be identified by regression or propensity score weighting methods. Our
identification and estimation method rely on the combination of two methods to create
orthogonal estimating equations for these parameters.

In observational studies, the potential treatments are endogenous, i.e. jointly determined
with the outcome variable. In such cases, causal effects may be identified with the use of a
binary instrument 𝑍 that affects the treatment but is independent of the potential outcomes.
An important parameter in this case is the local average treatment effect (LATE):

𝐸[𝑌 (1) − 𝑌 (0)|𝐷(1) > 𝐷(0)].

The random variables 𝐷(1) and 𝐷(0) indicate the potential participation decisions under
the instrument states 1 and 0. LATE is the average treatment effect for the subpopulation
of compliers ’ those units that respond to the change in the instrument. Another parameter
of interest is the local average treatment effect of the treated (LATET):

𝔼 [𝑌 (1) − 𝑌 (0)|𝐷(1) > 𝐷(0), 𝐷 = 1] ,

which is the average effect for the subpopulation of the treated compliers.

When the instrument 𝑍 is randomly assigned conditional on confounding factors 𝑋, the
LATE and LATET can be identified by instrumental variables regression or propensity score
weighting methods. Our identification and estimation method rely on the combination of
two methods to create orthogonal estimating equations for these parameters.1

6.2 Estimation and Inference of Treatment effects.
We consider the estimation of the effect of an endogenous binary treatment, 𝐷, on an out-
come variable, 𝑌 , in a setting with very many potential control variables. In the case of
endogeneity, the presence of a binary instrumental variable, 𝑍, is required for the estimation
of the LATE and LATET.

When trying to estimate treatment effects, the researcher has to decide what conditioning
variables to include. In the case of a non-randomly assigned treatment or instrumental
variable, the researcher must select the conditioning variables so that the instrument or
treatment is plausibly exogenous. Even in the case of random assignment, for a precise

1It turns out that the orthogonal estimating equations are the same as doubly robust estimating equations,
but emphasizing the name ”doubly robust” could be confusing in the present context.
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estimation of the policy variable selection of control variables is necessary to absorb residual
variation, but overfitting should be avoided. For uniformly valid post-selection inference,
“orthogonal”estimating equations as described above are they key to the efficient estimation
and valid inference. We refer to Belloni, Chernozhukov, Fernandez-Val, and Hansen (2013)
for details.

6.3 Application: 401(k) plan participation.
Though it is clear that 401(k) plans are widely used as vehicles for retirement saving, their
effect on assets is less clear. The key problem in determining the effect of participation in
401(k) plans on accumulated assets is saver heterogeneity coupled with nonrandom selection
into participation states. In particular, it is generally recognized that some people have a
higher preference for saving than others. Thus, it seems likely that those individuals with
the highest unobserved preference for saving would be most likely to choose to participate in
tax-advantaged retirement savings plans and would also have higher savings in other assets
than individuals with lower unobserved saving propensity. This implies that conventional
estimates that do not allow for saver heterogeneity and selection of the participation state
will be biased upward, tending to overstate the actual savings effects of 401(k) and IRA
participation.

Again, we start first with the data preparation:
pension = get_data("pension")
y = pension[:, "tw"];
d = pension[:, "p401"];
z = pension[:, "e401"];
X = pension[:,

["i2", "i3", "i4", "i5", "i6", "i7", "a2", "a3",
"a4", "a5", "fsize", "hs", "smcol", "col", "marr",
"twoearn", "db", "pira", "hown"]];

Now we can compute the estimates of the target treatment effect parameters. For ATE and
ATET we report the the effect of eligibility for 401(k)
pension_ate = rlassoATE(X, d, y);
r_summary(pension_ate);

Estimation and significance tesing of the treatment effect
Type: ATE
Bootstrap: none

========== ========= ==========
Coeff SE t.value

========== ========= ==========
10180.1 1930.68 5.2728

========== ========= ==========
pension_atet = rlassoATET(X, d, y);
r_summary(pension_atet);

Estimation and significance tesing of the treatment effect
Type: ATET
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Bootstrap: none

========== ========= ==========
Coeff SE t.value

========== ========= ==========
12628.5 2944.43 4.28893

========== ========= ==========

For LATE and LATET we estimate the effect of 401(k) participation (d) with plan eligibility
(z) as instrument.
pension_late = rlassoLATE(X, d, y, z);
r_summary(pension_late);

Estimation and significance tesing of the treatment effect
Type: LATE
Bootstrap: none

========== ======== ==========
Coeff SE t.value

========== ======== ==========
12992.1 2326.9 5.58344

========== ======== ==========
pension_latet = rlassoLATET(X, d, y, z);
r_summary(pension_latet);

Estimation and significance tesing of the treatment effect
Type: LATET
Bootstrap: none

========== ========= ==========
Coeff SE t.value

========== ========= ==========
15323.2 3645.28 4.20357

========== ========= ==========

The results are summarized into a table:
using PrettyTables
table = zeros(4,2)
table[1,:] = round.(vec(r_summary(pension_ate)[:, 1:2]), digits = 2);
table[2,:] = round.(vec(r_summary(pension_atet)[:, 1:2]), digits = 2);
table[3,:] = round.(vec(r_summary(pension_late)[:, 1:2]), digits = 2);
table[4,:] = round.(vec(r_summary(pension_latet)[:, 1:2]), digits = 2);
index = ["ATE", "ATET ", "LATE", "LATET"];

Estimation and significance tesing of the treatment effect
Type: ATE
Bootstrap: none

========== ========= ==========
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Coeff SE t.value
========== ========= ==========
10180.1 1930.68 5.2728

========== ========= ==========

Estimation and significance tesing of the treatment effect
Type: ATET
Bootstrap: none

========== ========= ==========
Coeff SE t.value

========== ========= ==========
12628.5 2944.43 4.28893

========== ========= ==========

Estimation and significance tesing of the treatment effect
Type: LATE
Bootstrap: none

========== ======== ==========
Coeff SE t.value

========== ======== ==========
12992.1 2326.9 5.58344

========== ======== ==========

Estimation and significance tesing of the treatment effect
Type: LATET
Bootstrap: none

========== ========= ==========
Coeff SE t.value

========== ========= ==========
15323.2 3645.28 4.20357

========== ========= ==========
pretty_table(

hcat(index, table), show_row_number = false,
header = [" ", "Estimate", "Std. Error"],
tf = tf_simple, nosubheader = true
)

======== ========== =============
Estimate Std. Error

======== ========== =============
ATE 10180.1 1930.68

ATET 12628.5 2944.43
LATE 12992.1 2326.9

LATET 15323.2 3645.28
======== ========== =============
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Finally, we estimate a model including all interaction effects:
pension_ate = rlassoATE(X, z, y);
pension_atet = rlassoATET(X, z, y);
pension_late = rlassoLATE(X, d, y, z);
pension_latet = rlassoLATET(X, d, y, z);

table = zeros(4, 2)
table[1,:] = r_summary(pension_ate)[:, 1:2];
table[2,:] = r_summary(pension_atet)[:, 1:2];
table[3,:] = r_summary(pension_late)[:, 1:2];
table[4,:] = r_summary(pension_latet)[:, 1:2];
index = ["ATE", "ATET ", "LATE", "LATET"]
pretty_table(

hcat(index, table), show_row_number = false,
header = [" ", "Estimate", "Std. Error"],
tf = tf_simple, nosubheader = true
)

Estimation and significance tesing of the treatment effect
Type: ATE
Bootstrap: none

========== ========= ==========
Coeff SE t.value

========== ========= ==========
8491.99 1902.92 4.4626

========== ========= ==========

Estimation and significance tesing of the treatment effect
Type: ATET
Bootstrap: none

========== ========= ==========
Coeff SE t.value

========== ========= ==========
10795.3 2568.13 4.20357

========== ========= ==========

Estimation and significance tesing of the treatment effect
Type: LATE
Bootstrap: none

========== ======== ==========
Coeff SE t.value

========== ======== ==========
12992.1 2326.9 5.58344

========== ======== ==========

Estimation and significance tesing of the treatment effect
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Type: LATET
Bootstrap: none

========== ========= ==========
Coeff SE t.value

========== ========= ==========
15323.2 3645.28 4.20357

========== ========= ==========
======== ========== =============

Estimate Std. Error
======== ========== =============

ATE 8491.99 1902.92
ATET 10795.3 2568.13
LATE 12992.1 2326.9

LATET 15323.2 3645.28
======== ========== =============

7 The Lasso Methods for Discovery of Significant
Causes amongst Many Potential Causes, with Many
Controls

Here we consider the model

𝑌𝑖⏟
Outcome

=
𝑝1

∑
𝑙=1

𝐷𝑖𝑙𝛼ℓ
⏟⏟⏟⏟⏟

Causes

+
𝑝2

∑
𝑗=1

𝑊𝑖𝑗𝛽𝑗
⏟⏟⏟⏟⏟

Controls

+ 𝜖𝑖⏟
Noise

where the number of potential causes 𝑝1 could be very large and the number of controls 𝑝2
could also be very large. The causes are randomly assigned conditional on controls. Under
approximate sparsity of 𝛼 = (𝛼𝑙)𝑝1

𝑙1
and 𝛽 = (𝛽𝑙)𝑝2

𝑙=1, we can use Lasso-based method of
Belloni, Chernozhukov, and Kato (2014) for estimating (𝛼𝑙)𝑝1

𝑙=1 and constructing a joint
confidence band on (𝛼𝑙)𝑝1

𝑙=1 and then checking which 𝛼l’s are significantly different from zero.
The approach is based on buliding orthogonal estimating equations for each of (𝛼𝑙)𝑝1

𝑙=1, and
can be interpreted as doing Frisch-Waugh procedure for each coefficient of interest, where
we do partialling out via Lasso or OLS-after-Lasso.

This procedure is implemented in the Julia package hdm. Here is an example in which
𝑛 = 100, 𝑝1 = 20, and 𝑝2 = 20, so that total number of regressors is 𝑝 = 𝑝1 + 𝑝2 = 40. In
this example 𝛼1 = 5 and 𝛽1 = 5, i.e. there is only one true cause 𝐷𝑖1, among the large number
of causes, 𝐷𝑖1, … , 𝐷𝑖20, and only one true control 𝑊𝑖1. This example is made super-simple
for clarity sake. The Belloni, Chernozhukov, and Kato (2014) procedure, implemented by
rlassoEffects function in Julia package HDMjl.
data = get_data("seed_500")
n, p = size(data);
p1 = 20;
X = data[:,2:end]
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Y = data[:,1];

r_confint(rlassoEffects(X, Y, index = [1:p1;]), joint = true);

2.5% 97.5%

V2 4.51324 5.21565
V3 -0.315482 0.306137
V4 -0.353448 0.187826
V5 -0.255285 0.288431
V6 -0.277643 0.277335
V7 -0.322652 0.295411
V8 -0.227265 0.301956
V9 -0.0483561 0.474666

V10 -0.187673 0.391344
V11 -0.2382 0.265076
V12 -0.315717 0.210467
V13 -0.310296 0.266827
V14 -0.175215 0.377884
V15 -0.324937 0.386795
V16 -0.323198 0.314346
V17 -0.266097 0.332153
V18 -0.180355 0.418108
V19 -0.370125 0.0477599
V20 -0.108274 0.394651
V21 -0.216624 0.256345

As you can see the procedure correctly tells that only the first cause $D_{i1}, among the large
number of causes, 𝐷𝑖1, … 𝐷𝑖20, is a statistically significant cause of 𝑌 (see the confidence
interval for variable V1).
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